# Decay dating

*22-Apr-2019 09:17*

And maybe not carbon-12, maybe we're talking about carbon-14 or something. And then nothing happens for a long time, a long time, and all of a sudden two more guys decay. And the atomic number defines the carbon, because it has six protons. If they say that it's half-life is 5,740 years, that means that if on day one we start off with 10 grams of pure carbon-14, after 5,740 years, half of this will have turned into nitrogen-14, by beta decay. What happens over that 5,740 years is that, probabilistically, some of these guys just start turning into nitrogen randomly, at random points. So if we go to another half-life, if we go another half-life from there, I had five grams of carbon-14. So now we have seven and a half grams of nitrogen-14. This exact atom, you just know that it had a 50% chance of turning into a nitrogen.

So with that said, let's go back to the question of how do we know if one of these guys are going to decay in some way. That, you know, maybe this guy will decay this second. Remember, isotopes, if there's carbon, can come in 12, with an atomic mass number of 12, or with 14, or I mean, there's different isotopes of different elements. So the carbon-14 version, or this isotope of carbon, let's say we start with 10 grams. Well we said that during a half-life, 5,740 years in the case of carbon-14-- all different elements have a different half-life, if they're radioactive-- over 5,740 years there's a 50%-- and if I just look at any one atom-- there's a 50% chance it'll decay. Now after another half-life-- you can ignore all my little, actually let me erase some of this up here. So we'll have even more conversion into nitrogen-14. So now we're only left with 2.5 grams of c-14. Well we have another two and a half went to nitrogen. So after one half-life, if you're just looking at one atom after 5,740 years, you don't know whether this turned into a nitrogen or not.

Sometimes, however, numerous discordant dates from the same rock will plot along a line representing a chord on the Concordia diagram. is then interpreted to be the date that the system became closed, and the younger date, t*, the age of an event (such as metamorphism) that was responsible for Pb leakage.

To see how we actually use this information to date rocks, consider the following: Usually, we know the amount, N, of an isotope present today, and the amount of a daughter element produced by decay, D*.

So what we do is we come up with terms that help us get our head around this. So I wrote a decay reaction right here, where you have carbon-14. So now you have, after one half-life-- So let's ignore this. I don't know which half, but half of them will turn into it. And then let's say we go into a time machine and we look back at our sample, and let's say we only have 10 grams of our sample left.